

Gépi tanulás 2. – Neurális hálók

Simon Eszter 2021. február 22.

PIM DBK

Tartalom

- 1. Bevezetés
- 2. Történeti áttekintés
- 3. Units
- 4. Feedforward Neural Networks
- 5. Training Neural Nets
- 6. Irodalom

Figure 1.1 Artificial intelligence, machine learning, and deep learning

The 'deep' in deep learning

Layers and representations

Understanding how deep learning works 1.

Understanding how deep learning works 2.

Figure 1.8 A loss function measures the quality of the network's output.

Understanding how deep learning works 3.

the fundamental trick is to use the loss score as a feedback signal to adjust the value of the weights a little, in a direction that will lower the loss score

- kezdetben a súlyok random értékek \rightarrow az output távol van az ideálistól, a loss score nagyon magas
- a súlyok minden egyes tanulási kör során egy kicsit módosulnak \rightarrow a loss score kisebb lesz
- ha ezt a tanulási kört elégszer iteráljuk, akkor elérjük a loss score minimumát
- a minimális loss score-ral rendelkező rendszer kimenete lesz a legközelebb a gold standardhez

Történeti áttekintés

mottó:

"Don't believe in the short-term hype, but do believe in the long-term vision."

a deep learning sok mindenre jó, de nem mindenre a legjobb eszköz:

- kevés az adat
- más algoritmus jobban használható az adott feladatra

Al winter: high expectations for the short term \rightarrow technology fails to deliver \rightarrow research investment dries up, slowing progress for a long time

1. 1960s: symbolic AI

Marvin Minsky 1967: "Within a generation ... the problem of creating artificial intelligence will substantially be solved." 1969-70: first AI winter

2. 1980s: expert systems

a few initial success stories \rightarrow expensive to maintain, difficult to scale, and limited in scope early 1990s: second AI winter

- 1940s: McCulloch–Pitts neuron: a simplified model of the human neuron as a kind of computing element
- 1950/60s: perceptron (Rosenblatt, 1958), bias (Widrow and Hoff, 1960), XOR (Minsky and Papert, 1969)
- 1980s: backpropagation (Rumelhart et al., 1986), handwriting recognition with backpropagation and convolutional neural networks (LeCun et al., 1989)
- 1990s: recurrent networks (Elman, 1990), Long Short-Term Memory (1997)
- 2010s: Geoffrey Hinton et al., Yoshua Bengio et al.

Why now?

Hardware

- Graphical Processing Unit (GPU): developed for gaming
- 2007: NVIDIA launched CUDA, a programming interface for its line of GPUs
- a small number of GPUs can replace massive clusters of CPUs
- parallelizable matrix multiplications
- 2016: Tensor Processing Unit (TPU) by Google

Data

"if deep learning is the steam engine of this revolution, then data is its coal"

Algorithms

The feedback signal used to train neural networks would fade away as the number of layers increased.

- better activation functions
- better weight-initialization schemes
- better optimization schemes

Only when these improvements began to allow for training models with 10 or more layers did deep learning start to shine.

A new wave of investment

total investment in AI: 2011: \$19 million \rightarrow 2014: \$394 million

The democratization of deep learning

early days: doing deep learning required significant programming expertise \rightarrow now: basic Python scripting skills are sufficient (PyTorch, TensorFlow, Keras) \rightarrow no feature engineering

Units

A neural unit

The building block of a neural network is a single computational unit. A unit takes a set of real valued numbers as input, performs some computation on them, and produces an output. a neural unit is taking a weighted sum of its inputs, with one additional term in the sum called a bias term

$$z = b + \sum_{i} w_i x_i$$

expressing this weighted sum using vector notation: replacing the sum with dot product ($z \in \mathbb{R}$):

$$z = w \cdot x + b$$

instead of using z, neural units apply a non-linear function f to $z \rightarrow$ the output of this function is the activation value for the unit a

$$y = a = f(z)$$

the final output of the network is *y*, and since here we have a single unit, *y* and *a* are the same

Non-linear functions - sigmoid

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Non-linear functions - tanh and ReLU

Feedforward Neural Networks

a feedforward network

is a multilayer network

- in which the units are connected with no cycles;
- the outputs from units in each layer are passed to units in the next higher layer, and
- no outputs are passed back to lower layers

(networks with cycles are called recurrent neural networks (RNNs))

Three kinds of nodes

input units, hidden units, and output units

- the hidden layer is formed of hidden units, each of which is a neural unit, taking a weighted sum of its inputs and then applying a non-linearity
- fully-connected: each hidden unit sums over all the input units

Weight matrix

We represent the parameters for the entire hidden layer by combining the weight vector w_i and bias b_i for each unit i into a single weight matrix W and a single bias vector b for the whole layer. Each element W_{ij} of the weight matrix Wrepresents the weight of the connection from the *i*th input unit x_i to the *j*th hidden unit h_j .

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3
h_1	W ₁₁	W ₁₂	W ₁₃
h_2	W ₂₁	W ₂₂	W ₂₃
h ₃	W ₃₁	W ₃₂	W33
h_4	W ₄₁	W42	W43

3 steps:

- 1. multiplying the weight matrix by the input vector x
- 2. adding the bias vector b
- 3. applying the activation function g

$$h = \sigma(Wx + b)$$

- the number of inputs: n_0
- *x* is a vector of real numbers of dimension n_0 : $x \in \mathbb{R}^{n_0}$
- the hidden layer has dimensionality n_1 , so $h \in \mathbb{R}^{n_1}$
- $W \in \mathbb{R}^{n_1 \times n_0}$

- \cdot the resulting value *h* forms a representation of the input
- the role of the output layer: to take this representation and compute the final output
- the output can be a real-valued number, but it is rather a probability distribution across the output nodes

Intermediate output

- the output layer also has a weight matrix (U)
- some models don't include a bias vector *b*, so here we eliminate it
- the weight matrix *U* is multiplied by the vector *h* to produce the intermediate output *z*:

$$z = Uh$$

- $U \in \mathbb{R}^{n_2 \times n_1}$
- element U_{ij} is the weight from unit j in the hidden layer to unit i in the output layer

The softmax function

converting a vector of real-valued numbers to a vector encoding a probability distribution:

$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^d e^{z_j}} 1 \le i \le d$$

the final equations for a feedforward network with a single hidden layer, which takes an input vector *x*, outputs a probability distribution *y*, and is parameterized by weight matrices *W* and *U* and a bias vector *b*:

 $h = \sigma(Wx + b)$ z = Uhy = softmax(z)

activation functions:

- at the internal layers: ReLU or tanh
- at the final layer:
 - for binary classification: sigmoid
 - for multinomial classification: softmax

Training Neural Nets

- the correct output: y
- the system's estimate of the true y: \hat{y}
- the goal of the training procedure: to learn parameters $W^{[i]}$ and $b^{[i]}$ for each layer *i* that make \hat{y} as close as possible to the true *y*

- 1. we need a loss function that models the distance between \hat{y} and $y \rightarrow \text{cross-entropy loss}$
- we have to minimize the loss function → an optimization algorithm for iteratively updating the weights: gradient descent
- 3. we have to know the gradient of the loss function $\rightarrow \text{error}$ backpropagation

Computing the Gradient - two parameters

for more parameters \rightarrow error backpropagation or backward differentiation \rightarrow all parameters can be calibrated together non-convex optimization problem with possible local minima

- to prevent overfitting \rightarrow dropout: randomly dropping some units and their connections from the network during training
- tuning hyperparameters:
 - \cdot the number of layers
 - the number of hidden nodes per layer
 - the choice of activation functions
 - ...

Irodalom

- Jurafsky 3rd edition 7. chapter: https://web.stanford.edu/~jurafsky/slp3/7.pdf
- Francois Chollet: Deep Learning with Python. Manning, Shelter Island, 2018.: https:

//www.manning.com/books/deep-learning-with-python