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Bevezetés



Gépi tanulás
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The ‘deep’ in deep learning
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Layers and representations
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Understanding how deep learning works 1.
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Understanding how deep learning works 2.
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Understanding how deep learning works 3.

the fundamental trick is to use the loss score as a feedback signal to
adjust the value of the weights a little, in a direction that will lower

the loss score
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Training loop

• kezdetben a súlyok random értékek→ az output távol van
az ideálistól, a loss score nagyon magas

• a súlyok minden egyes tanulási kör során egy kicsit
módosulnak→ a loss score kisebb lesz

• ha ezt a tanulási kört elégszer iteráljuk, akkor elérjük a
loss score minimumát

• a minimális loss score-ral rendelkező rendszer kimenete
lesz a legközelebb a gold standardhez
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Történeti áttekintés



The promise of AI

mottó:
“Don’t believe in the short-term hype, but do believe in the
long-term vision.”

a deep learning sok mindenre jó, de nem mindenre a legjobb
eszköz:

• kevés az adat
• más algoritmus jobban használható az adott feladatra
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AI winters

AI winter: high expectations for the short term→ technology
fails to deliver→ research investment dries up, slowing
progress for a long time

1. 1960s: symbolic AI
Marvin Minsky 1967: “Within a generation ... the problem of
creating artificial intelligence will substantially be solved.”
1969-70: first AI winter

2. 1980s: expert systems
a few initial success stories→ expensive to maintain,
difficult to scale, and limited in scope
early 1990s: second AI winter
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Elméleti alapok

• 1940s: McCulloch–Pitts neuron: a simplified model of the
human neuron as a kind of computing element

• 1950/60s: perceptron (Rosenblatt, 1958), bias (Widrow and
Hoff, 1960), XOR (Minsky and Papert, 1969)

• 1980s: backpropagation (Rumelhart et al., 1986),
handwriting recognition with backpropagation and
convolutional neural networks (LeCun et al., 1989)

• 1990s: recurrent networks (Elman, 1990), Long Short-Term
Memory (1997)

• 2010s: Geoffrey Hinton et al., Yoshua Bengio et al.
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Why now?

Hardware

• Graphical Processing Unit (GPU): developed for gaming
• 2007: NVIDIA launched CUDA, a programming interface for
its line of GPUs

• a small number of GPUs can replace massive clusters of
CPUs

• parallelizable matrix multiplications
• 2016: Tensor Processing Unit (TPU) by Google

Data
“if deep learning is the steam engine of this revolution, then
data is its coal”
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Why now? – cont.

Algorithms
The feedback signal used to train neural networks would fade
away as the number of layers increased.

• better activation functions
• better weight-initialization schemes
• better optimization schemes

Only when these improvements began to allow for training
models with 10 or more layers did deep learning start to shine.

A new wave of investment
total investment in AI: 2011: $19 million→ 2014: $394 million
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Why now? – cont.

The democratization of deep learning
early days: doing deep learning required significant
programming expertise→ now: basic Python scripting skills
are sufficient (PyTorch, TensorFlow, Keras)→ no feature
engineering
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Units



A neural unit

The building block of a neural network is a single computational
unit. A unit takes a set of real valued numbers as input, performs

some computation on them, and produces an output.
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Bias

a neural unit is taking a weighted sum of its inputs, with one
additional term in the sum called a bias term

z = b+
∑
i
wixi

expressing this weighted sum using vector notation: replacing
the sum with dot product (z ∈ R):

z = w · x+ b
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Activation

instead of using z, neural units apply a non-linear function f to
z→ the output of this function is the activation value for the
unit a

y = a = f(z)

the final output of the network is y, and since here we have a
single unit, y and a are the same
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Non-linear functions – sigmoid

y = σ(z) = 1
1+ e−z
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Non-linear functions – tanh and ReLU

y = ez − e−z
ez + e−z y = max(x, 0)
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Summary – a unit
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Feedforward Neural Networks



A feedforward network

a feedforward network
is a multilayer network

• in which the units are connected with no cycles;
• the outputs from units in each layer are passed to units in
the next higher layer, and

• no outputs are passed back to lower layers

(networks with cycles are called recurrent neural networks (RNNs))
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Three kinds of nodes

input units, hidden units, and output units

22



The hidden layer

• the hidden layer is formed of hidden units, each of which
is a neural unit, taking a weighted sum of its inputs and
then applying a non-linearity

• fully-connected: each hidden unit sums over all the input
units
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Weight matrix

We represent the parameters for the entire hidden layer by
combining the weight vector wi and bias bi for each unit i into
a single weight matrix W and a single bias vector b for the
whole layer. Each element Wij of the weight matrix W
represents the weight of the connection from the ith input unit
xi to the jth hidden unit hj.
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The W matrix

x1 x2 x3

h1 w11 w12 w13
h2 w21 w22 w23
h3 w31 w32 w33
h4 w41 w42 w43
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Matrix operations

3 steps:
1. multiplying the weight matrix by the input vector x
2. adding the bias vector b
3. applying the activation function g

h = σ(Wx+ b)

• the number of inputs: n0
• x is a vector of real numbers of dimension n0: x ∈ Rn0

• the hidden layer has dimensionality n1, so h ∈ Rn1

• W ∈ Rn1×n0
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The role of the output layer

• the resulting value h forms a representation of the input
• the role of the output layer: to take this representation
and compute the final output

• the output can be a real-valued number, but it is rather a
probability distribution across the output nodes
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Intermediate output

• the output layer also has a weight matrix (U)
• some models don’t include a bias vector b, so here we
eliminate it

• the weight matrix U is multiplied by the vector h to
produce the intermediate output z:

z = Uh

• U ∈ Rn2×n1

• element Uij is the weight from unit j in the hidden layer to
unit i in the output layer
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The softmax function

converting a vector of real-valued numbers to a vector
encoding a probability distribution:

softmax(zi) =
ezi∑d
j=1 ezj

1 ≤ i ≤ d
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Summary – feedforward network

the final equations for a feedforward network with a single
hidden layer, which takes an input vector x, outputs a
probability distribution y, and is parameterized by weight
matrices W and U and a bias vector b:

h = σ(Wx+ b)
z = Uh

y = softmax(z)

activation functions:
• at the internal layers: ReLU or tanh
• at the final layer:

• for binary classification: sigmoid
• for multinomial classification: softmax 30



Training Neural Nets



Supervised machine learning

• the correct output: y
• the system’s estimate of the true y: ŷ
• the goal of the training procedure: to learn parameters
W[i] and b[i] for each layer i that make ŷ as close as
possible to the true y
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How to do that?

1. we need a loss function that models the distance between
ŷ and y→ cross-entropy loss

2. we have to minimize the loss function→ an optimization
algorithm for iteratively updating the weights: gradient
descent

3. we have to know the gradient of the loss function→ error
backpropagation
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Computing the Gradient – one parameter
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Computing the Gradient – two parameters

for more parameters→ error backpropagation or backward
differentiation→ all parameters can be calibrated together

non-convex optimization problem with possible local minima
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More details on learning

• to prevent overfitting→ dropout: randomly dropping
some units and their connections from the network during
training

• tuning hyperparameters:
• the number of layers
• the number of hidden nodes per layer
• the choice of activation functions
• ...
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Irodalom



Irodalom

• Jurafsky 3rd edition 7. chapter:
https://web.stanford.edu/~jurafsky/slp3/7.pdf

• Francois Chollet: Deep Learning with Python. Manning,
Shelter Island, 2018.: https:
//www.manning.com/books/deep-learning-with-python
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