
Gépi tanulás 2. – Neurális hálók

Simon Eszter
2021. február 22.

PIM DBK

Tartalom

1. Bevezetés

2. Történeti áttekintés

3. Units

4. Feedforward Neural Networks

5. Training Neural Nets

6. Irodalom

1

Bevezetés

Gépi tanulás

2

The ‘deep’ in deep learning

3

Layers and representations

4

Understanding how deep learning works 1.

5

Understanding how deep learning works 2.

6

Understanding how deep learning works 3.

the fundamental trick is to use the loss score as a feedback signal to
adjust the value of the weights a little, in a direction that will lower

the loss score

7

Training loop

• kezdetben a súlyok random értékek→ az output távol van
az ideálistól, a loss score nagyon magas

• a súlyok minden egyes tanulási kör során egy kicsit
módosulnak→ a loss score kisebb lesz

• ha ezt a tanulási kört elégszer iteráljuk, akkor elérjük a
loss score minimumát

• a minimális loss score-ral rendelkező rendszer kimenete
lesz a legközelebb a gold standardhez

8

Történeti áttekintés

The promise of AI

mottó:
“Don’t believe in the short-term hype, but do believe in the
long-term vision.”

a deep learning sok mindenre jó, de nem mindenre a legjobb
eszköz:

• kevés az adat
• más algoritmus jobban használható az adott feladatra

9

AI winters

AI winter: high expectations for the short term→ technology
fails to deliver→ research investment dries up, slowing
progress for a long time

1. 1960s: symbolic AI
Marvin Minsky 1967: “Within a generation ... the problem of
creating artificial intelligence will substantially be solved.”
1969-70: first AI winter

2. 1980s: expert systems
a few initial success stories→ expensive to maintain,
difficult to scale, and limited in scope
early 1990s: second AI winter

10

Elméleti alapok

• 1940s: McCulloch–Pitts neuron: a simplified model of the
human neuron as a kind of computing element

• 1950/60s: perceptron (Rosenblatt, 1958), bias (Widrow and
Hoff, 1960), XOR (Minsky and Papert, 1969)

• 1980s: backpropagation (Rumelhart et al., 1986),
handwriting recognition with backpropagation and
convolutional neural networks (LeCun et al., 1989)

• 1990s: recurrent networks (Elman, 1990), Long Short-Term
Memory (1997)

• 2010s: Geoffrey Hinton et al., Yoshua Bengio et al.

11

Why now?

Hardware

• Graphical Processing Unit (GPU): developed for gaming
• 2007: NVIDIA launched CUDA, a programming interface for
its line of GPUs

• a small number of GPUs can replace massive clusters of
CPUs

• parallelizable matrix multiplications
• 2016: Tensor Processing Unit (TPU) by Google

Data
“if deep learning is the steam engine of this revolution, then
data is its coal”

12

Why now? – cont.

Algorithms
The feedback signal used to train neural networks would fade
away as the number of layers increased.

• better activation functions
• better weight-initialization schemes
• better optimization schemes

Only when these improvements began to allow for training
models with 10 or more layers did deep learning start to shine.

A new wave of investment
total investment in AI: 2011: $19 million→ 2014: $394 million

13

Why now? – cont.

The democratization of deep learning
early days: doing deep learning required significant
programming expertise→ now: basic Python scripting skills
are sufficient (PyTorch, TensorFlow, Keras)→ no feature
engineering

14

Units

A neural unit

The building block of a neural network is a single computational
unit. A unit takes a set of real valued numbers as input, performs

some computation on them, and produces an output.

15

Bias

a neural unit is taking a weighted sum of its inputs, with one
additional term in the sum called a bias term

z = b+
∑
i
wixi

expressing this weighted sum using vector notation: replacing
the sum with dot product (z ∈ R):

z = w · x+ b

16

Activation

instead of using z, neural units apply a non-linear function f to
z→ the output of this function is the activation value for the
unit a

y = a = f(z)

the final output of the network is y, and since here we have a
single unit, y and a are the same

17

Non-linear functions – sigmoid

y = σ(z) = 1
1+ e−z

18

Non-linear functions – tanh and ReLU

y = ez − e−z
ez + e−z y = max(x, 0)

19

Summary – a unit

20

Feedforward Neural Networks

A feedforward network

a feedforward network
is a multilayer network

• in which the units are connected with no cycles;
• the outputs from units in each layer are passed to units in
the next higher layer, and

• no outputs are passed back to lower layers

(networks with cycles are called recurrent neural networks (RNNs))

21

Three kinds of nodes

input units, hidden units, and output units

22

The hidden layer

• the hidden layer is formed of hidden units, each of which
is a neural unit, taking a weighted sum of its inputs and
then applying a non-linearity

• fully-connected: each hidden unit sums over all the input
units

23

Weight matrix

We represent the parameters for the entire hidden layer by
combining the weight vector wi and bias bi for each unit i into
a single weight matrix W and a single bias vector b for the
whole layer. Each element Wij of the weight matrix W
represents the weight of the connection from the ith input unit
xi to the jth hidden unit hj.

24

The W matrix

x1 x2 x3

h1 w11 w12 w13
h2 w21 w22 w23
h3 w31 w32 w33
h4 w41 w42 w43

25

Matrix operations

3 steps:
1. multiplying the weight matrix by the input vector x
2. adding the bias vector b
3. applying the activation function g

h = σ(Wx+ b)

• the number of inputs: n0
• x is a vector of real numbers of dimension n0: x ∈ Rn0

• the hidden layer has dimensionality n1, so h ∈ Rn1

• W ∈ Rn1×n0

26

The role of the output layer

• the resulting value h forms a representation of the input
• the role of the output layer: to take this representation
and compute the final output

• the output can be a real-valued number, but it is rather a
probability distribution across the output nodes

27

Intermediate output

• the output layer also has a weight matrix (U)
• some models don’t include a bias vector b, so here we
eliminate it

• the weight matrix U is multiplied by the vector h to
produce the intermediate output z:

z = Uh

• U ∈ Rn2×n1

• element Uij is the weight from unit j in the hidden layer to
unit i in the output layer

28

The softmax function

converting a vector of real-valued numbers to a vector
encoding a probability distribution:

softmax(zi) =
ezi∑d
j=1 ezj

1 ≤ i ≤ d

29

Summary – feedforward network

the final equations for a feedforward network with a single
hidden layer, which takes an input vector x, outputs a
probability distribution y, and is parameterized by weight
matrices W and U and a bias vector b:

h = σ(Wx+ b)
z = Uh

y = softmax(z)

activation functions:
• at the internal layers: ReLU or tanh
• at the final layer:

• for binary classification: sigmoid
• for multinomial classification: softmax 30

Training Neural Nets

Supervised machine learning

• the correct output: y
• the system’s estimate of the true y: ŷ
• the goal of the training procedure: to learn parameters
W[i] and b[i] for each layer i that make ŷ as close as
possible to the true y

31

How to do that?

1. we need a loss function that models the distance between
ŷ and y→ cross-entropy loss

2. we have to minimize the loss function→ an optimization
algorithm for iteratively updating the weights: gradient
descent

3. we have to know the gradient of the loss function→ error
backpropagation

32

Computing the Gradient – one parameter

33

Computing the Gradient – two parameters

for more parameters→ error backpropagation or backward
differentiation→ all parameters can be calibrated together

non-convex optimization problem with possible local minima

34

More details on learning

• to prevent overfitting→ dropout: randomly dropping
some units and their connections from the network during
training

• tuning hyperparameters:
• the number of layers
• the number of hidden nodes per layer
• the choice of activation functions
• ...

35

Irodalom

Irodalom

• Jurafsky 3rd edition 7. chapter:
https://web.stanford.edu/~jurafsky/slp3/7.pdf

• Francois Chollet: Deep Learning with Python. Manning,
Shelter Island, 2018.: https:
//www.manning.com/books/deep-learning-with-python

36

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python

	Bevezetés
	Történeti áttekintés
	Units
	Feedforward Neural Networks
	Training Neural Nets
	Irodalom

